28 research outputs found

    Mechanical Properties of Honeycomb Structured Zr-based Bulk Metallic Glass Specimens Fabricated by Laser Powder Bed Fusion

    No full text
    Laser powder bed fusion of bulk metallic glasses offers great potential to overcome the existing restrictions of the geometrical size and complexity of bulk metallic glasses in conventional manufacturing routes due to high cooling rates during laser powder bed fusion. Bulk metallic glasses exhibit extraordinary strength, paired with high elasticity. Yet insights into additive manufactured bulk metallic glasses, especially of complex structures, are limited. The present article investigates the mechanical behaviour of Zr-based bulk metallic glasses, fabricated into honeycomb structures through laser powder bed fusion, by performing three-point bending tests. The results reveal a significant increase in specific strength, quasi-plasticity, and high elastic elongation. These structures thus offer great potential for light-weight applications and compliant mechanisms

    Inline drift detection using monitoring systems and machine learning in selective laser melting

    No full text
    Direct metal laser sintering, an additive manufacturing technique, has a huge growing demand in industries like aerospace, biomedical, and tooling sector due to its capability to manufacture complex parts with ease. Despite many technological advancements, the reliability and repeatability of the process are still an issue. Therefore, there is a demand for inline automatic fault detection and postprocessing tools to analyze the acquired in situ monitoring data aiming to provide better-quality assurance to the user. Herein, the treatment of the data obtained using the EOSTATE optical tomography monitoring system is focused. A balanced dataset is obtained with the help of computer tomography of the certified part (Stainless Steel CX cylindrical samples), through which a feature matrix is prepared, and the layers of the part are classified either having "Drift" or "No-drift." The model is trained with the feature matrix and tested on benchmark parts (Maraging Steel) and on an industrial part (knuckle, automotive part) manufactured in AlSi10Mg. The proposed semisupervised approach shows promising results for presented case studies. Thus, the semisupervised machine learning approach, if adopted, could prove to be a cost effective and fast approach to postprocess the in situ monitoring data with much ease
    corecore